Abstract
This article shows the description and content of program package for virtual investigation of the typical schemes of power converters learned in study subject of Power Electronics. The program package is intended mostly for application in extramural education. Programs are elaborated as executable files in C++ language.

Keywords
Laboratory, extramural, education, schemes, power, electronics, diagrams, results, DC, AC, transistors, thyristors

Introduction
Power Electronics is one of the main study subjects for students in field of Industrial Automation and Electrical Transport [1,2]. The subject must be learned in classes and also in laboratories. But last measure is connected with application of special equipment which is sometime expensive and very complex especially in part of control systems. Therefore for full time students often computer modelling on base of special simulation tools as PSpice, PSIM [3], MatLab and other is applied. But application of such tools is expensive measure and therefore can’t be used widely especially for extramural students. Taking into account listed above in Riga Technical University a computer program package for typical schemes of power electronics converters is developed. All subject in respect to laboratorial works is divided in two large categories:

1. The single-phase AC and DC converters;
2. The three-phase converters.

In this paper are represented a content of the both parts and also examples of program for certain types of converters.

1. Index of program package
In the first part of program an AC single-phase and DC most applied converter schemes are implemented:

- Laboratory work N1 Investigation of an AC single-phase thyristor regulator;
- Laboratory work N2. Investigation of the single-phase controlled rectifier;
- Laboratory work N3. Investigation of the single-phase cycloconverter;
- Laboratory work N4. Investigation of the single-phase PWM rectifier;
- Laboratory work N5. Investigation of the DC step-down (Buck) converter;
- Laboratory work N6. Investigation of the DC step-up (Boost) converter;
- Laboratory work N7. Investigation of the DC reversible transistor pulse converter;
- Laboratory work N8. Investigation of the single-phase voltage source PWM inverter;
- Laboratory work N9. Investigation of the single-phase current source inverter.

In the second part of the package a three-phase converters are presented corresponding to the following listing:

- Laboratory work N1. Investigation of the three-phase thyristor AC voltage regulator with insulated neutral point;
- Laboratory work N2. Investigation of the three-phase controlled rectifier with neutral point;
- Laboratory work N3. Investigation of the three-phase system controlled rectifier-inverter;
- Laboratory work N4. Investigation of the three-phase cycloconverter;
- Laboratory work N5. Investigation of the DC voltage source converter to the three-phase sinus shaped current;
- Laboratory work N6. Investigation of the current source DC voltage converter to the three-phase voltage.
In way of continuous work on modifying of the package it should be possible to implement also some new laboratory works connected with the both parts.

2. Principles of presentation of laboratory work

As example in next will be discussed an implementation of laboratory work for investigation of the single-phase controlled rectifier (Laboratory work N2 of the first part). Each laboratory work in the package contains of the three separated parts: workspace presented on the screen of computer; explanation of operation principles of converter; example of possible laboratory tasks on presented converter.

The workspace for discussed laboratory work is presented on Fig.1. In the left upper part of screen an input data are presented: RMS value of the network voltage; frequency of the voltage; inductance L_1 of the network lines; resistance R_L of load; inductance of the load L_{ld}; EMF of the load E_{ld}; delay angle for thyristors α, grad; number of presented voltage cycles k_m. Here also is presented an optional input field for displaying of several last voltage cycles.

In the right upper side of the screen is presented calculated by program diagrams of loads instantaneous voltage u_d, loads instantaneous current i_d and also for network current i_1. An electrical scheme of the investigated converter is presented in lower-left part of the screen. But in the lower-right part are presented measured parameters for the end position of the process; mean (averaged) values of the load’s voltage U_{da} and current I_{da}; RMS value for network current I_{1rms} and its fundamental I_{1h}; amplitude value of load’s current pulsation I_{dpm} and its relative value I_{dpm}/I_{da}; realized an active power P; commutation angle φ, grad; THD indicator for network current, %.

Curves and parameters calculation is performed by the program in very fast (some parts of the second) time which allow very fast examination of the converter at different changes of input data.

![Fig.1. Screenshot of the workspace for laboratory work N2 “Investigation of the single-phase controlled rectifier”](image-url)

The second part of the laboratory work is intended for description of the investigated converter. This part can be activated applying option Help on the Main Menu bar. Fragment of this description is presented on Fig.2.

The third part of the laboratory work is example of possible tasks at investigation process for examined converter.
SINGLE-PHASE CONTROLLED THYRISTOR BRIDGE RECTIFIER

Rectifier converts an input AC voltage into the output DC voltage. Controlled version allows to change averaged (mean) value of output voltage applying a time delay for turn-on of thyristors in respect to the AC voltage wave.

Such a single phase system comprises a 4 thyristors – controllable on turn-on unidirectional conductivity semiconductor switches- connected in scheme of 4 pole bridge with two interconnected a cathodes of the thyristors as positive polarity output DC pole and two anodes as negative polarity output pole of the rectified DC voltage ud (instantaneous values) with measured by voltmeter averaged (mean) value of voltage Ud (Fig.1). Input AC sinus shape voltage with instantaneous values uin and magnitude Um is applied to the two other poles of the bridge.

![Fig.1](image)

When AC voltage uin is in its half-wave with upper clamp a positive (as on Fig.1) a both thyristors $V1$ and $V2$ can be turned on with some angular delay α in respect to initial point of this half-wave (accepted as positive one). In this case input current $i1$ neglecting of input line inductance $L1$ is same as current id of DC load.

When uin is in its half wave with upper clamp negative (in brackets on Fig.2) with angular delay α in respect to the initial point of this half-wave (accepted as negative one) can be turned on both thyristors $V3,V4$ but if $V1$ and $V2$ conducts in this turn-on instant current then they will be turned off for to them a reverse voltage is applied.

Current $i1$ in this case is opposite directed to the load current id. …….

![Fig.2](image)

Laboratory task №1

Investigation of the single-phase controlled bridge rectifier

Input data:
1 – Resistance of load R, Ω;
2 – Inductance of load L, H (greater than zero);
3 – EMF of load, E, V in the range from −500 V to +300 V;
4 – Inductance of the AC network $L1$, H (from zero to some mH);
5 – Delay angle for thyristors switching α from 0 to 180 grad.
6 – RMS value of network voltage $U1$ and its frequency.

Parameters 1,2,4,6 are denoted by teacher.

Output calculated parameters:
- Ud – load’s DC voltage;
- Id – load’s DC current;
- $I1$ – RMS value of network current;
- $I1h$ – fundamental of network current;
- THD – total harmonics distortion factor for network current;
- G – commutation angle, grad;
- P – active power realized, W.

Task:
1. To obtain in the stationary action case a characteristics $Ud=f(Id)$ at different values of α in its all range if values of L and R are constant ones but current is changed with variation of E.
2. Obtaining mentioned characteristics search a values of currents for
–starting a discontinuous load current regimes;
–thyristors break-down points at inverter regime.
3. To obtain a characteristics $G=f(Id)$ at different values of α!
4. To obtain characteristics $THD=f(Id)$ at different α!
5. To obtain characteristics $P=f(Id)$ at different α!

On Fig.3 are represented a curves obtained using the program and given above tasks at denoted parameters $U1=220$ V, $f=50$ Hz, $R=5$ Ω, $L1=0.003$ H, $L=0.3$ H. All data for construction of the given curves was obtained approximately in 0.5 hour.
Conclusions

1. Developed program package with laboratory works is useful tool for improvement of knowledge of students in field of Fundamentals of Power Electronics examining in laboratory basic schemes in the field.

2. Program package can extended introducing some new investigation schemes for students.

Literature

Fig. 3. Curves obtained using elaborated program for single-phase controlled rectifier at given input data and conditions:
a and b - Ud=f(Id); c – G=f(Id); d – THD=f(Id); e – P=f(Id)
Similarly can be described also operation with the rest above mentioned laboratory works.